
Contents lists available at ScienceDirect
Journal of Quantitative Spectroscopy &
Radiative Transfer

Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55
http://d
0022-40

n Corr
E-m

baptiste
journal homepage: www.elsevier.com/locate/jqsrt
SMARTIES: User-friendly codes for fast and accurate calculations
of light scattering by spheroids

W.R.C. Somerville, B. Auguié, E.C. Le Ru n

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences,
Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
a r t i c l e i n f o

Article history:
Received 3 November 2015
Received in revised form
5 January 2016
Accepted 5 January 2016
Available online 20 January 2016

Keywords:
Electromagnetic scattering
Spheroids
T-matrix
Numerical simulations
x.doi.org/10.1016/j.jqsrt.2016.01.005
73/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: wrcsomerville@gmail.com (W.
.auguie@gmail.com (B. Auguié), eric.leru@vu
a b s t r a c t

We provide a detailed user guide for SMARTIES, a suite of MATLAB codes for the calculation of
the optical properties of oblate and prolate spheroidal particles, with comparable cap-
abilities and ease-of-use as Mie theory for spheres. SMARTIES is a MATLAB implementation of
an improved T-matrix algorithm for the theoretical modelling of electromagnetic scat-
tering by particles of spheroidal shape. The theory behind the improvements in numerical
accuracy and convergence is briefly summarized, with reference to the original publica-
tions. Instructions of use, and a detailed description of the code structure, its range of
applicability, as well as guidelines for further developments by advanced users are dis-
cussed in separate sections of this user guide. The code may be useful to researchers
seeking a fast, accurate and reliable tool to simulate the near-field and far-field optical
properties of elongated particles, but will also appeal to other developers of light-
scattering software seeking a reliable benchmark for non-spherical particles with a
challenging aspect ratio and/or refractive index contrast.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

We present a user guide and description of SMARTIES, a
numerically stable and highly accurate implementation of
the T-matrix/Extended Boundary-Condition Method
(EBCM) for light-scattering by spheroids, based on our
recent work [1–3]. The complete package can be down-
loaded freely from http://www.victoria.ac.nz/scps/research/
research-groups/raman-lab/numerical-tools, see Section 1.4
for licensing information. The name of the program stands
for Spheroids Modelled Accurately with a Robust T-matrix
Implementation for Electromagnetic Scattering, and is also a
nod to the well-known colorful candy of oblate shape.
R.C. Somerville),
w.ac.nz (E.C. Le Ru).
1.1. Description and overview

This package contains a suite of MATLAB codes to simulate
the light scattering properties of spheroidal particles, fol-
lowing the general T-matrix framework [4]. The scatterer
should be homogeneous, and described by a local, isotropic
and linear dielectric response (this includes metals, but not
perfect conductors). Magnetic, non-linear, and optically
active materials are not considered. The surrounding med-
ium is described by a lossless, homogeneous and isotropic
dielectric medium extending to infinity.

SMARTIES specifically implements recently developed
algorithms for numerically accurate and stable calculations.
The general EBCM/T-matrix method is described in detail in
Ref. [4], while the underlying theory and relevant formulas
for our specific improvements are described in Ref. [2], with
additional information found in [1,3]. The relevant equa-
tions and sections from both Refs. [2,4] are referenced when
possible as “inline comments” to the code.

http://www.victoria.ac.nz/scps/research/research-groups/raman-lab/numerical-tools
http://www.victoria.ac.nz/scps/research/research-groups/raman-lab/numerical-tools
www.sciencedirect.com/science/journal/00224073
www.elsevier.com/locate/jqsrt
http://dx.doi.org/10.1016/j.jqsrt.2016.01.005
http://dx.doi.org/10.1016/j.jqsrt.2016.01.005
http://dx.doi.org/10.1016/j.jqsrt.2016.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2016.01.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2016.01.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2016.01.005&domain=pdf
mailto:wrcsomerville@gmail.com
mailto:baptiste.auguie@gmail.com
mailto:eric.leru@vuw.ac.nz
http://dx.doi.org/10.1016/j.jqsrt.2016.01.005
http://dx.doi.org/10.1016/j.jqsrt.2016.01.005

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5540
The package includes detailed examples and can also
be used by a non-specialist with an application-oriented
perspective, requiring no specific knowledge of the
underlying theory.

The package contains:

� Six ready-to-run example scripts to calculate standard
optical properties, namely fixed-orientation and orien-
tation-averaged far-field cross-sections, near fields, T-
matrix elements, and scattering matrix elements. Examples
also cover the simulation of wavelength-dependent spectra
of surface-field and far-field properties.

� Two tutorial scripts where such simulations are further
detailed with step-by-step instructions, exposing the
lower-level calculations of intermediate quantities.

� Additional high-level and post-processing functions,
which can be used by users to write new scripts tailored
to their specific needs.

� A number of low-level functions, which are used by the
code and might be adapted by advanced users.

� Dielectric functions for a few materials such as gold and
silver, implemented via analytic expressions [5,6] or
silicon, interpolated from tabulated values.

1.2. Relation to other codes

Standard T-matrix/EBCM codes in FORTRAN have already
been developed [7,8], with those by Mishchenko and
Travis [9] arguably the most popular. These freely available
codes provide a wide range of capabilities (including for
example different particle shapes) and have been widely
used and tested. The standard EBCM method however
suffers from a number of numerical problems and
instabilities for large multipole orders, which are neces-
sary for either high precision, large particles, elongated
particles, near-field calculations, or any combination of the
above. This can result in inaccurate results and in some
cases in complete loss of convergence. This unreliable
behavior for numerically challenging simulations can
make the method difficult to use for non-experts, who
may find it hard to “tune” the parameters that ensure
accuracy and convergence. It also impedes the theoretical
study of the intrinsic convergence properties of the T-
matrix method, obfuscated by (implementation-depen-
dent) numerical loss of precision [3].

Recently, we have identified the primary causes for
numerical instabilities in the special (but important) case
of spheroidal particles [1] and proposed a new algorithm
to overcome them [2]. Thanks to those improvements,
high accuracy and reliable convergence can be obtained
over a wider range of parameters, especially towards high
aspect-ratio (elongated) particles where the standard
EBCM implementation would fail [3]. This document aims
to present and discuss a publicly available MATLAB imple-
mentation of these recent developments. Our package
should complement, rather than replace, existing T-matrix
codes such as those of Mishchenko and Travis [9]. The
present code offers a number of advantages:

� Thanks to the improvements in accuracy and con-
vergence, we believe this code will be readily accessible
to non-expert users and allow the routine calculation of
optical properties of spheroids as easily as with Mie
theory for spheres. An example is provided in Section 2.7
as a demonstration.

� We also provide specific routines to compute near fields
and surface fields, which will be beneficial to the
exploitation of this powerful method in areas such as
nanophotonics, optical trapping, plasmonics, etc., where
the T-matrix/EBCM method has not been widely
applied.

� MATLAB provides an easy-access, interactive environment
to carry out a broad range of numerical simulations, and
plot/export the results conveniently.

� The accuracy of the obtained results can be easily esti-
mated for any type of calculation, owing to the well-
behaved convergence of the improved algorithm.

� A wider range of parameters can be simulated, espe-
cially scatterers with large aspect ratios.

A number of limitations should be also be noted:

� These codes are limited to spheroidal particles, for
which we identified and circumvented numerical pro-
blems that are very specific to this geometrical shape.

� MATLAB is inherently slow compared to compiled lan-
guages such as C or FORTRAN, which may be an issue for
intensive calculations (for example the simulation of
polydisperse samples, with particles varying in size and
shape). We envisage that this implementation could
serve as a template for a future port of this new algo-
rithm to a more efficient language.

� The calculation of some derived properties, e.g. the
scattering matrix, has not been optimized and could be
particularly slow.

� Although the range of parameters that may be simu-
lated with reasonable accuracy has been extended
towards larger aspect ratios, the method is still limited
to moderate particle sizes; and even small sizes only for
particles with a large relative refractive index. In this
case, the matrix inversion step is the limiting factor and
extended-precision arithmetic as implemented in [9]
would be required to overcome it.

1.3. Aims of this manual

This document was written with two types of users in
mind:

� Researchers interested in simulating electromagnetic
scattering by nonspherical particles for practical appli-
cations, and seeking an efficient and (relatively) fool-
proof program with ease of use comparable to Mie
theory.

� Other developers of electromagnetic scattering software
interested in benchmarking calculations against a
highly accurate reference.

With this dual perspective, we have divided the source
code into low-level and high-level functions, including
complete scripts for specific calculations, but also docu-
mented how to access intermediate quantities such as the

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 41
T-matrix elements. This user guide is also divided into
sections that reflect these two complementary objectives,
with Sections 3 and 4 focusing on more theoretical aspects
and in-depth description of the code implementation.
1.4. Licensing

SMARTIES is licensed under the Creative Commons
Attribution-NonCommercial 4.0 International License. To
view a copy of this license, visit http://creativecommons.
org/licenses/by-nc/4.0/. The package including all its files
and content are under the following copyright: 2015
Walter Somerville, Baptiste Auguié, and Eric Le Ru. The
package may be used freely for research, teaching, or
personal use. The unmodified complete package may be
re-distributed and freely exchanged for academic research
or government use, but cannot be commercialized or used
for commercial purposes. The theory and code should be
appropriately referenced by citing this user-guide in any
presentation of results obtained using this package (or any
other code using it).
1.5. Disclaimer

These codes have been developed and tested with
MATLAB 7.14 (R2012a) [10], GNU Octave 4.0.0 [11] (open-
source software) and MATLAB 8.5 (R2015a) on a PC running
Microsoft Windows 7 x64. The code is also known to run
under MacOS X (10.10) and Linux (Ubuntu 15.04). Slight
changes may be necessary to run them on older (or
newer!) versions of MATLAB/Octave.

Although every effort has been made to get rid of bugs
(programming bugs, or incorrect physical formulas) and to
test the code against existing ones, some issues may still
be present. We hope the users will help us identify them
and we will try to update the code when necessary.
z

x y

c

Prolate spheroid

x

z

Spherical co

Fig. 1. 3D illustration of spherical coordinates, and the geometrical parameters for
Note also in this context that these codes do not
implement a strict check of user input; if incorrect para-
meters are passed in a function call, errors will occur.

The authors do not accept any responsibility for
improper use of the program, accidental errors that may
still be present, or improper interpretation of its limita-
tions and/or results derived therefrom. It is the responsi-
bility of the user to check the validity of the inputs/out-
puts, their physical interpretation, and their suitability for
her/his specific problem.

1.6. Feedback

We would like to hear from the users of this code to
improve it over time. This feedback could include simple
issues of layout and organization of the information or
plain errors. Feel free to send us any feedback (good or
bad), bug reports, questions, comments, or suggestions to
eric.leru@vuw.ac.nz
2. Getting started

Figure 1 depicts the scatterer's geometry: the spheroid,
either prolate or oblate, has a fixed orientationwith symmetry
axis along z. For completeness, analytical formulas related to
the geometry of spheroids are provided in Section 3.2. The
incident field may be specified along an arbitrary direction,
defined in spherical coordinates. The full set of parameters
required to run a simulation, including the specification of the
incident field, is defined in Section 2.4.

2.1. Installation
� Download the SMARTIES package from our webpage [12].
� Unzip the smarties.zip file, keeping the subdirectory

structure for clarity.
z

x y

Oblate spheroid

c
y

r

ordinates

prolate (left) and oblate (right) spheroids. The axis of revolution is along z.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5542
� Set your MATLAB current directory to smarties and run
the InitPath.m function once in MATLAB to
add all the subdirectories to your MATLAB search path.
All the functions and scripts are then accessible from
the MATLAB command line. This allows all codes to run
and communicate with each other irrespective of the
current directory.

Note that you must run InitPath.m each time you
restart MATLAB. To avoid this step, you may add all smar-
ties folders to your MATLAB path permanently or edit the
startup.m file to do that (check MATLAB's help for details).

2.2. Octave users

Octave is an open-source alternative to MATLAB.
Although our codes were mostly developed and tested for
MATLAB, we have tried to ensure their compatibility with
Octave. Most scripts should therefore run as-is with
Octave, although they were typically slower in our tests.
The numerical accuracy may also differ, as well as the
rendering of graphics.

2.3. Initial steps

The easiest way to get started is to run one of the
example files in the Scripts folder (those starting with
ScriptSolve) and change the parameters as needed.
These scripts provide a direct example of how to call a
number of high-level functions designed to solve specific
problems of interest. These are

� ScriptSolveForT: Calculates the T-matrix, scattering
matrix, and orientation-averaged properties for a single
wavelength.

� ScriptSolveForFixed: Calculates the field expansion
coefficients and the corresponding far-field cross-sec-
tions for a fixed-orientation, for a single wavelength.

� ScriptSolveForSurfaceField: Calculates the field
expansion coefficients and the corresponding far-field
cross-sections and surface fields for a fixed-orientation.

� ScriptSolveForTSpectrum: Calculates the T-matrix
and the orientation-averaged properties for multiple
wavelengths.

� ScriptSolveForFixedSpectrum: Calculates the field
expansion coefficients and the corresponding far-field
cross-sections for a fixed-orientation, as a function of
wavelength.

� ScriptSolveForSurfaceFieldSpectrum: Calculates
the field expansion coefficients and the corresponding
far-field cross-sections and surface fields for a fixed-
orientation, as a function of wavelength.

Those scripts define the parameters of the simulation,
call the corresponding high-level functions to perform the
calculations, and output the most important results in the
MATLAB console and/or as interactive graphics. Convergence
tests are also performed as part of the calculations, and
accuracy estimates for the results are included in the
displays.
In order to understand in more detail how the code
operates, we also provide two example scripts, ScriptTu-
torial and ScriptTutorialSpectrum, where all the
main steps in the calculation are listed explicitly with
extensive comments about the meaning of the various
parameters. We recommend copying and editing these
example scripts to solve user-specific problems and/or
implement custom extensions to the current code.

Most functions start with a detailed help and are com-
mented within the code. Typing help FunctionName will
display the corresponding help information.

The information below summarizes and complements
the inline comments included in the six example scripts
ScriptSolve…. It provides the most important technical
details of the implementation, for users wishing to write
additional custom routines.

2.4. Definition of the parameters

For the calculation of the T-matrix and orientation-
averaged cross-sections, only four parameters are needed
to define the scatterer properties:

� a: semi-axis along x; y.
� c: semi-axis along z (axis of rotational symmetry).
� k1: wavevector in embedding medium (possibly a

wavelength-dependent vector).
� s: relative refractive index s (possibly a wavelength-

dependent vector).

Note that consistent units must be used for a, c, and k1,
e.g. a and c in nm and k1 in nm�1.

k1 denotes the wavevector outside the particle, where
the refractive index is n1 ¼

ffiffiffiffiffi
ε1

p
(assumed real positive):

k1 ¼
ω
c
ffiffiffiffiffi
ε1

p ¼ 2π
λ

ffiffiffiffiffi
ε1

p
: ð1Þ

The relative refractive index (adimensional) is defined as

s¼
ffiffiffiffiffi
ε2

pffiffiffiffiffi
ε1

p : ð2Þ

Both s and ε2 may be complex (for absorbing and/or con-
ducting particles).

The P;Q ; T ;R-matrices computation requires the fol-
lowing parameters:

� N: Number of multipoles N requested for the T-matrix
(and R-matrix).

� nNbTheta: Number of angles θ used in Gaussian
quadratures for the evaluation of P- and Q-matrix
integrals.

The function sphEstimateNandNT may be used to auto-
matically estimate those latter two parameters for best
convergence, but we nevertheless recommend that the
convergence of the calculations be checked to ensure
reliable results.

For convenience those six parameters may be collated in
a structure (a MATLAB object akin to a list, called stParams in
our example scripts), which is passed to the high-level
(slv…) functions.

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 43
Additionally, one of the following two parameters is
needed if the field expansion coefficients and/or the cross-
sections for a given fixed orientation are sought:

� sIncType: String defining the type of incident plane
wave, e.g. “KxEz” for a wave incident along x and line-
arly polarized along z. This shorthand notation is only
defined for a few standard combinations, namely KxEz,

KxEy, KyEz, KyEx, KzEx, KzEy. In other cases, use
stIncPar.

� stIncPar: Structure defining a linearly polarized inci-
dent plane wave excitation via three Euler angles.
It can be obtained from calling vshMakeIncident

Parameters.

For field calculations (such as surface fields), further
parameters are required:

� nNbThetaPst: Number of angles θ for post-processing
(should typically be larger than nNbTheta for accurate
surface averaging).

� lambda: Wavelength (in free space) [in the same unit as
a, c, k�1

1].
� epsilon2: Dielectric function ε2 of scatterer (possibly

complex).
� epsilon1: Relative dielectric constant ε1 of embedding

medium (real positive).

Note that the latter three are not independent of k1 and s
that have already been defined. Those additional para-
meters should also be included in stParams.

Finally a number of optional settings can also be
defined in a structure stOptions:

� bGetR: Boolean (default: false). If false, the R-matrix
and internal field coefficients are not calculated. The
default value will be overridden by functions requiring
R.

� Delta: Number of extra multipoles for P- and
Q- matrices, i.e. NQ ¼NþΔ. Default is Δ¼ 0. If
Delta¼-1, then the code tries to estimate it from the
convergence of T22;m ¼ 1

11 (see [3] for details), by calling
sphEstimateDelta.

� NB: Number of multipoles to compute the Bessel func-
tions in the improved algorithm ðNBZNQ Þ. If NB¼0,
then NB is estimated by calling sphEstimateNB, which
is the case by default.

� absmvec: Vector containing the values of jmj for which
T is to be computed. These values are limited to
0r jmjrN. To compute all m (most cases of interest),
simply use absmvec¼0:N (which is the default value).

� bGetSymmetricT: Boolean (default: false). If true, T
is symmetrized as described in Section 3.8.

� bOutput: Boolean (default: true). If false, suppresses
some of the output printed in the MATLAB console, which
is a better option for example in calculations of spectra
with many wavelengths.
2.5. Minimal example

The following script is set up to simulate the far-field
cross-sections of a gold prolate spheroid in air, at a single
wavelength λ¼ 650 nm. The simulation parameters are
stored in a structure stParams for convenience. Only one
optional parameter is defined in stOptions (for the
others, default values will be used). These two structures
are passed to the high-level slvForFixed function that
implements the calculation of the expansion coefficients
and cross-sections for a fixed orientation.

Minimalist script showing how to set up a simulation
This general structure is followed by all the examples, with
varying levels of complexity, and the high-level functions
such as slvForFixed performing the actual calculations
are grouped in the Solve directory.

2.6. Convergence, accuracy, and range of validity

One of the problems of the conventional T-matrix/
EBCM method is to study its convergence and accuracy.
This is because the method becomes unstable with mul-
tipoles of high order, which may occur before the results
have fully converged. Many of those issues have been
solved in the present method, as discussed in Ref. [3]. Ref.
[3] also provides a detailed discussion of the parameters
affecting convergence and accuracy.

Thanks to the improved stability, we propose a simple
and reliable convergence and accuracy test that will work
in most cases. It consists in repeating the same calcula-
tions with a larger number of multipoles N and quadrature
points Nθ, for example: N0 ¼Nþ5 and N0

θ ¼Nθþ5. If
surface-averaged properties are calculated, the number of
quadrature points used in post-processing should also be
checked independently.

In our experience, this simple convergence test pro-
vides a reliable estimate of the accuracy of the results. It is

1:1

5:1

10:1

20:1
30:1 40:1 50:1

50

100

150

C
abs

10
3 n

m
2

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5544
implemented in the six example scripts provided with
the code.

Obviously, such a test will double the required com-
puting times; for repeated computations such as spectra
with many wavelengths, we therefore recommend to only
test the most numerically challenging cases, typically the
largest size parameter and/or largest value of jsj.

The function sphEstimateNandNT can be use to
estimate automatically the required N, Nθ for a simulation.
This function should not replace the convergence test
described above as it only relies on the convergence of the
orientation-averaged extinction cross-section (and only for
m¼0,1) and may fail in rare cases. It does however provide
a good first guess for those parameters, and can in addition
be used to study how they depend on the scatterer prop-
erties, or test the range of validity of the method.

An example of such results is given in Tables 3 and 4 of
the Appendix for oblate and prolate spheroids, respec-
tively, where the required N and Nθ, along with the
obtained accuracy, are summarized as a function of max-
imum size parameter and aspect ratio for s¼1.311. Inter-
estingly, when expressed in terms of the maximum size
parameter, xmax ¼ k1maxða; cÞ, almost identical con-
vergence requirements were obtained for oblate and pro-
late spheroids. From those tables, we also infer that the
accuracy and stability do not depend strongly on aspect
ratio (in stark contrast with the standard EBCM, which
rapidly becomes unstable for larger aspect ratios). There
remains however an upper limit on the size of particles
that can be modelled, which is comparable to the upper
limit of double-precision implementations of the standard
EBCM at low aspect ratio [9].

Additional automatic tests were carried out to estimate
the maximum computable size parameter for a given h
and s. Those results are summarized in Table 1 for oblate
spheroids, with the corresponding table for prolate
spheroids in Appendix Table 2. These computer-generated
estimates provide an overview of the range of validity of
this new implementation. These suggest that, as a rule of
thumb, the method will start to fail when the maximum
size parameter xmax ¼ k1maxða; cÞ approaches the limits
jsjxmax � 50 for relatively low aspect ratios, progressively
Table 1
Convergence study for oblate spheroids. We here consider a number of
aspect ratios h ranging from 1.1 to 100, and 7 representative values of s.
For each, we calculate the orientation-averaged extinction cross-section
for increasing sizes, characterized by the maximum size parameter
xmax ¼ k1 maxða; cÞ. The values in the table correspond to the largest xmax

for which convergence was obtained. Those values are only indicators of
the range of validity of the code; they were obtained via an automated
search, which may be slightly inaccurate in some cases.

s h→

1.1 2 4 10 20 100

1.311 + 0.00i 80 50 45 35 30 27
1.500 + 0.00i 50 35 30 25 22 25
1.500 + 0.02i 60 40 30 25 22 25
1.500 + 2.00i 80 20 12 11 11 9
2.500 + 0.00i 22 16 12 11 11 11
4.000 + 0.10i 16 11 8 6 6 6
0.100 + 4.00i 60 10 7 5 5 5
going down to jsjxmax � 30 for the largest aspect ratios. For
relatively large aspect ratios, for example h¼20, the upper
limit of size parameter therefore becomes comparable to
extended-precision implementations of the standard EBCM
(xmax � 32 for oblate spheroids with s¼1.311 [9]). As for
the standard EBCM codes, a large relative index jsj how-
ever remains very challenging.

Also notable from these tables is the fact that a very
large number of Gaussian quadrature points are necessary
for large aspect ratios of any size. This can be explained
from the high curvature of the tip around θ¼ 0 and sug-
gests that much more efficient quadrature schemes could
be developed for those cases, e.g. simply using subdivi-
sions of the range of integration with different density of
points.

2.7. Case study: influence of size and aspect ratio on the far-
field properties of silver spheroids

We now illustrate the ease of use of this code for rea-
listic, application-oriented calculations, with a compre-
hensive example simulating optical spectra of prolate sil-
ver spheroids, as a function of size and aspect ratio. The
calculation is fully automated with built-in precision
checking to ensure a minimum relative accuracy of 10�3

(better precision could easily be obtained, at the cost of
increased computation time). Fig. 2 illustrates this calcu-
lation for prolate spheroids with challenging aspect ratios,
up to 50:1.
1:1

5:1

10:1

20:1

30:1
40:1 50:1

0

0

10

20

30

C
sca

0.5 1.5 2.5 3.5 4.5 5.5 6.5
Wavelength μm

C
ro

ss
−s

ec
tio

ns

Fig. 2. Example calculation of scattering and absorption spectra of pro-
late Ag spheroids in water with varying aspect ratio h (1–50), with a fixed
equivalent-volume radius rV¼20 nm.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

rV
=

15n m
rV

=
30n m

rV
=

45 nm
rV

=
60n m

rV
=

75nm
rV

=
90n m

400 600 800 1000 1200 1400 1600 1800 2000

Wavelength /nm

A
sp

ec
t r

at
io

0 10 20 30 40 50 60σabs 103 nm2

Fig. 3. Color map of fixed-orientation absorption spectra of Ag spheroids
in water with varying aspect ratio (from 1 to 5), for 6 different sizes
(equivalent-volume radius rV varied from 15 nm to 90 nm, from top to
bottom).

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 45
Another set of results is presented in Fig. 3, which
provides a comprehensive perspective on the optical
properties of such particles, with sizes closer to experi-
mentally accessible values. The optical response is domi-
nated by plasmon resonances, which vary with the size
and shape of the particles. The full calculation presented in
Fig. 3 ran for a few hours on a standard desktop computer,
and produced � 3:6� 105 data points (1200 combinations
of parameter values, and 300 wavelengths per spectrum).

Figure 3 highlights a number of interesting physical
features of relevance to the field of plasmonics. Small
elongated particles behave as nano-antennas, with a
dipolar resonance that red-shifts with increasing aspect
ratio [13]. The strength of the absorption increases initially
with larger particle size, and red-shifts, but as the larger
particles scatter more efficiently the plasmon resonance
suffers additional radiative damping, which results in a
broadening of the resonance, and a plateau of peak
absorption at larger sizes. Larger particle sizes also support
multipolar resonances, here visible in the bottom two
panels as sharp lines around 400–600 nm.

Surface fields at specific points, or averaged over the
whole particle surface, may also be calculated with similar
ease. The ability to routinely simulate the electromagnetic
response of elongated particles with comparable ease of
use and accuracy to Mie theory should thus enable, as
demonstrated in this illustrative example, the exploration
of a much broader range of parameters, and perhaps bring
out new physical insights.
3. Underlying principles of the code

A detailed description of the T-matrix/EBCM method
can be found in Ref. [4]. The most important aspects and
notations along with the details of the new algorithm
implemented here can be found in Ref. [2]. We will not
repeat all this information here, only summarize the most
relevant aspects, and will refer to the equations and
notations of Ref. [2] when needed.

3.1. Spherical coordinates

To apply the T-matrix/EBCM method, the geometry
must be defined in spherical coordinates, with the fol-
lowing conventions (see inset of Fig. 1): a point M is
represented by ðr;θ;ϕÞ where,

� rZ0 is the distance from origin O.
� 0rθrπ is the co-latitude, angle between ez and OM.
� 0rϕr2π is the longitude, angle between ex and the

projection of OM on (xOy).

The spherical coordinates are thus related to the Car-
tesian coordinates by:

x¼ r sin θ cos ϕ
y¼ r sin θ sin ϕ
z¼ r cos θ

8><
>: ð3Þ

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5546
Moreover, the unit base vectors in Cartesian and spherical
coordinates are related through:

er ¼ sin θ cos ϕ exþ sin θ sin ϕeyþ cos θ ez

eθ ¼ cos θ cos ϕ exþ cos θ sin ϕ ey� sin θ ez

eϕ ¼ � sin ϕ exþ cos ϕ ey ð4Þ

The inverse relations are:

ex ¼ sin θ cos ϕ erþ cos θ cos ϕ eθ� sin ϕ eϕ

ey ¼ sin θ sin ϕ erþ cos θ sin ϕ eθþ cos ϕ eϕ

ez ¼ cos θ er� sin θ eθ ð5Þ

3.2. The spheroid geometry

This code is specific to spheroids, which are described
in spherical coordinates as (Fig. 1):

r θ
� �¼ acffi

a2 cos 2θþc2 sin 2θ
p ð6Þ

dr
dθ

¼ rθ ¼
a2�c2

a2c2
rðθÞ3 sin θ cos θ; ð7Þ

where a is the semi-axis length along the x- and y-axes,
and c is the semi-axis length along the z-axis, which is the
axis of revolution.

There are two classes of spheroids that may be con-
sidered (Fig. 1). Oblate spheroids ða4cÞ are “smarties”-like
(flattened), while prolate spheroids ðc4aÞ resemble a
rugby ball (or a cigar, depending on your inclination). The
degenerate case where a¼c reduces to a sphere. The
aspect ratio, h, is defined as the ratio between maximum
and minimum distances from the origin:

h¼ rmax

rmin
¼

a
c

for oblate spheroids;

c
a

for prolate spheroids:

8><
>: ð8Þ

Note that this is different from [9] where the aspect ratio is
chosen as a=c and therefore smaller than unity for prolate
spheroids.

Often, spheroids are characterized by their equivalent-
volume sphere radius rV, or their equivalent-area sphere
radius, rA. The volume of a spheroid is

V ¼ 4
3 πa

2c ð9Þ

and hence the equivalent-volume radius is

rV ¼
ffiffiffiffiffiffiffi
a2c3

p
: ð10Þ

The surface area of a spheroid is

S¼
2πa2 1þ1�e2

e
tanh�1e

� �
if oblate

2πa2 1þ c
ae

sin �1e
� �

if prolate

8>><
>>: ð11Þ

where e is the eccentricity, which with our definition of
the aspect ratio ðh41Þ can be written as e¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�1

p
=h for

both types of spheroids. From this, it is possible to express
the equivalent-area sphere radius as

rA ¼
a

ffi
1
2
þ1�e2

2e
tanh�1e

r
if oblate

a

ffi
1
2
þ c
2ae

sin �1e

r
if prolate:

8>>><
>>>:

ð12Þ

These values rV and rA are provided here for reference, but
they are not used explicitly in the code.

3.3. Principle of the T-matrix/EBCM method

The T-matrix/EBCM method can be viewed as an
extension of Mie theory to non-spherical scatterer geo-
metries. In both Mie theory and the T-matrix method, the
fields are expanded in terms of vector spherical wave-
functions (VSWFs), as

Einc ¼ E0
X
n;m

anmMð1Þ
nm k1rð ÞþbnmNð1Þ

nm k1rð Þ ð13Þ

Esca ¼ E0
X
n;m

pnmM
ð3Þ
nm k1rð ÞþqnmN

ð3Þ
nm k1rð Þ ð14Þ

Eint ¼ E0
X
n;m

cnmMð1Þ
nm k2rð ÞþdnmNð1Þ

nm k2rð Þ ð15Þ

where for convenience the external field is decomposed
into the sum of incident and scattered fields as
Eout ¼ EincþEsca. k1 (k2) is the wavevector in the embed-
ding medium (particle), Mð1Þ and Nð1Þ are the magnetic and
electric regular (finite at the origin) VSWFs, and Mð3Þ and
Nð3Þ are the irregular magnetic and electric VSWFs that
satisfy the radiation condition for outgoing spherical
waves. The indices m and n correspond to the projected
and total angular momentum, respectively with jmjrn
and n¼ 1⋯1. The VSWFs definition can be found in
Appendix C of Ref. [4].

A unit incident field ðE0 ¼ 1Þ is assumed everywhere in
the code (by linearity, the fields scale proportionally to E0).
We also note that all fields here refer to the time-
independent complex fields (or phasors), which repre-
sent harmonic monochromatic fields ~EðtÞ of angular fre-
quency ω using the following convention:

~Eðr; tÞ ¼ Re EðrÞe� iωt
� �

: ð16Þ

By linearity of the scattering equations, the expansion
coefficients are linearly related and we can define four
matrices as follows:

p
q

 !
¼ �P

c
d

� �
;

a
b

� �
¼Q

c
d

� �
; ð17Þ

p
q

 !
¼ T

a
b

� �
;

c
d

� �
¼ R

a
b

� �
; ð18Þ

where the expansions coefficients are formally grouped in
vectors a;b; c;d;p;q with a combined index p� ðn;mÞ.

Each of these matrices can be written in block notation
as follows, with the block index referring to the type of

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 47
multipole (electric or magnetic):

Q ¼ Q11 Q 12

Q21 Q 22

 !
: ð19Þ

Each block is an infinite square matrix, which is in practice
truncated to only include elements acting on multipole
orders up to a maximum order N. Taking into account
jmjrn, each block in the matrix has dimensions
NðNþ2Þ � NðNþ2Þ. The most common method to calcu-
late those matrices is the Extended Boundary-Condition
Method (EBCM) also called the Null-Field Method, where
the matrix elements of P;Q are obtained as surface inte-
grals on the particle as derived for example in Ref. [4,
Section 5.8].

In practice, the expansion coefficients of the incident
field ða;bÞ are known, and the scattered field can be
obtained from T, while the internal field results from R.
From the above equations, those two matrices can be
computed from P and Q as:

T¼ �PQ �1; R¼Q �1: ð20Þ
The matrix T contains all information about the scat-

terer. It allows in particular for analytical averaging over all
orientations [9,14–17] or solving multiple scattering pro-
blems by an ensemble of particles [16-18].

3.4. Additional simplifications for spheroids

For particles with symmetry of revolution, such as
spheroids, expansion coefficients with different m values
are entirely decoupled, and one can therefore solve the
problem for each value of m, where m can be viewed as a
fixed parameter (which will be implicit in most of our
notations). This means that each large 2NðNþ2Þ �
2NðNþ2Þ matrix can be decoupled into 2Nþ1 indepen-
dent matrices with m¼ �N⋯N, each of size 2ðN�mþ1Þ �
2ðN�mþ1Þ (or 2N � 2N for m¼0). Moreover, we have:

T11
n;kj�m ¼ T11

n;kjm; T12
n;kj�m ¼ �T21

n;kjm;

T21
n;kj�m ¼ �T12

n;kjm; T22
n;kj�m ¼ T22

n;kjm: ð21Þ

and therefore only mZ0 values need to be considered in
the calculation of T.

Furthermore, the surface integrals reduce to line inte-
grals, for which we have recently proposed a number of
simplified expressions [19].

Reflection symmetry with respect to the equatorial
plane also results in a number of additional simplifications
(see Section 5.2.2 of Ref. [4] and Section 2.3 of Ref. [2]).
Half of the matrix entries are zero because of the sym-
metry in changing θ-π�θ and the other integrals are
simply twice the integrals evaluated over the half-range
0 to π=2. Explicitly, we have

P11
nk ¼ P22

nk ¼Q11
nk ¼ Q22

nk ¼ 0 if nþk odd;

P12
nk ¼ P21

nk ¼Q12
nk ¼ Q21

nk ¼ 0 if nþk even; ð22Þ
and identical relations for T and R. From the point of view
of numerical implementation, it means that only half the
elements need to be computed and stored. More impor-
tantly, it also implies that we can rewrite Eqs. (17) and (18)
as two independent sets of equations [2]. Explicitly, we
define

ae ¼
a2
a4
⋮

0
B@

1
CA; bo ¼

b1
b3
⋮

0
B@

1
CA; ao ¼

a1
a3
⋮

0
B@

1
CA; be ¼

b2
b4
⋮

0
B@

1
CA;

ð23Þ
and similarly for c, d, p, q. We also define the matrices Qeo
and Qoe from Q as:

Qeo ¼
Q 11

ee Q 12
eo

Q 21
oe Q 22

oo

 !
; Qoe ¼

Q11
oo Q 12

oe

Q21
eo Q 22

ee

 !
; ð24Þ

where Q12
eo denotes the submatrix of Q12 with even row

indices and odd column indices, and similarly for the
others. One can see that Qeo and Qoe contain all the non-
zero elements of Q and exclude all the elements that must
be zero by reflection symmetry, so this is an equivalent
description of the Q-matrix.

The equations relating the expansion coefficients then
decouple into two sets of independent equations, for
example

ae
bo

 !
¼Qeo

ce
do

 !
;

ao
be

 !
¼Qoe

co
de

 !
; ð25Þ

and similar expressions deduced from Eqs. (17) and (18)
for P, T, and R. As a result, the problem of finding the
2ðN�mþ1Þ � 2ðN�mþ1Þ T- (or R-) matrix up to multi-
pole order N reduces to finding the two decoupled T-
matrices Teo and Toe, each of size ðN�mþ1Þ � ðN�mþ1Þ,
namely:

Teo ¼ �Peo Qeo
� ��1

; Toe ¼ �Poe Qoe
� ��1

: ð26Þ
These symmetries and the definitions of this section are

used in the code to compute and store the matrices.

3.5. Angular functions

The T-matrix integrals and many of the physical prop-
erties are expressed in terms of angular (θ-dependent)
functions, which are derived from the associated Legendre
functions Pm

n ðxÞ. We here summarize the most important
definitions. The associated Legendre functions may be
written in terms of the Legendre polynomials as (for
mZ0)

Pm
n xð Þ ¼ ð�1Þm 1�x2

� �m=2 dm

dxm
Pn xð Þ ð27Þ

where the polynomial is given by the expression

Pn xð Þ ¼ 1
2nn!

dn

dxn
x2�1
� �n

: ð28Þ

The factor ð�1Þm in the definition of Eq. (27) is known as
the Condon–Shortley phase. In the case of negative m, the
expression for the associated Legendre function is

P�m
n xð Þ ¼ ð�1Þmðn�mÞ!

ðnþmÞ!P
m
n xð Þ: ð29Þ

Following Ref. [4], we do not use the associated
Legendre functions directly, but rather some functions
obtained from them, which have more favorable numerical
properties. We notably use a special case of the Wigner d-

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5548
functions:

dnm θ
� �� dn0m θ

� �¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞ!
ðnþmÞ!

s
Pm
n cos θ
� � ð30Þ

where we make use of the simpler dnmðθÞ notation. We
will also use the functions πnmðθÞ and τnmðθÞ, derived from
them as (Eqs. (5.16) and (5.17) of [4]):

πnm θ
� �¼mdnmðθÞ

sin θ
;

τnm θ
� �¼ d

dθ
dnm θ

� �
: ð31Þ

The function πnmðθÞ is generated for m40 using the
recursion relation (derived from Eq. (B.22) in [4], see also
[20]):

πn;m θð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 �m2

p 2n� 1ð Þ cos θπn�1;m θð Þ� �
�

ffi
ðn� 1Þ2 �m2

q
πn�2;m θð Þ; ð32Þ

applied for nZmþ1 with the initial conditions

πm�1;mðθÞ ¼ 0

πm;mðθÞ ¼mAmð sin θÞm�1 ð33Þ

with Am defined recursively as

A0 ¼ 1

Amþ1 ¼ Am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ1
2ðmþ1Þ

s
: ð34Þ

τnm is then calculated as

τnm θð Þ ¼ �1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�m2

p
πn�1;m θð Þþ n

m
cos θπnm θð Þ: ð35Þ

For mo0, the following relations are used:

πn;�mðθÞ ¼ ð�1Þmþ1πnmðθÞ;
τn;�mðθÞ ¼ ð�1ÞmτnmðθÞ: ð36Þ

Finally, for m¼0, we have

πn;0ðθÞ ¼ 0

τn;0ðθÞ ¼ � sin θP0
nð cos θÞ: ð37Þ

When dnmðθÞ is needed, it is calculated as:

dn;m θ
� �¼ 1

m
sin θπn;m θ

� �
if ma0

dn;0ðθÞ ¼ Pnð cos θÞ if m¼ 0

8<
: ð38Þ

In those latter expressions, dn;0 and τn;0 are obtained by
standard recursion for the Legendre polynomials and their
derivatives. For nZ1:

dn;0 ¼
2n�1

n
cos θ dn�1;0�

n�1
n

dn�2;0

τn;0 ¼ cos θ τn�1;0�n sinθ τn�2;0

d�1;0 ¼ 0; d0;0 ¼ 1

τ�1;0 ¼ 0; τ0;0 ¼ � sin θ: ð39Þ

The function vshPinmTaunm computes the required
angular functions using the above formulas, which are
numerically stable and efficient [4].
3.6. Integral quadratures

All T-matrix integrals can be written as integrals over
the variable cos ðθÞ. The integrals are numerically com-
puted using a standard Gauss–Legendre quadrature
scheme with Nθ points,

Z π

0
f ðθÞ sin θ dθ¼

Z 1

�1
f ðθÞ dð cos θÞ �

XNθ

p ¼ 1

wpf ðθpÞ; ð40Þ

where θp and wp are the nodes and weights of the quad-
rature. The same procedure is also used for calculating
surface-averaged field properties, but may require a dif-
ferent number of integration points.

The function auxInitLegendreQuad calculates these
nodes and weights for any number Nθ and uses the algo-
rithm developed by Greg von Winckel available from the
MATLAB Central website [21] (where it is called lgwt.m). For
convenience the file Utils/quadTable.mat stores pre-
calculated nodes and weights by steps of 5 from 50 up to
2000, which can reduce the calculation time.

For spheroids, the T-matrix integrals can be reduced to
a half-interval by symmetry, so the nodes and weights are
computed for quadrature order 2Nθ and only the positive
nodes θp40 are used (giving Nθ quadrature points).

We note that alternative quadrature schemes could
easily be used, and may perform better for these types of
integrands (requiring fewer function evaluations). Unfor-
tunately, in order to make the best use of vectorized cal-
culations, paramount for efficient MATLAB code, the imple-
mentation of adaptive quadrature (with internal accuracy
estimate) appears challenging and would require an
important refactoring of those functions performing
numerical integrations.

3.7. Computation of the P and Q matrices

The formulas used for the computation of the integrals
of the P and Q matrices are given in Section 2.2 of Ref. [2].
Explicitly, we use the following equations from Ref. [2]:

P12; Q 12: Eqs: ð11Þ and ð15Þ
P21; Q 21: Eqs: ð12Þ and ð16Þ
P11; Q 11: Eqs: ð17Þ and ð18Þ
P22; Q 22: Eqs: ð19Þ–ð22Þ

8>>>><
>>>>:

ð41Þ

The diagonal terms are treated separately and we use:

P11
nn; Q

11
nn: Eqs: ð23Þ; ð25Þ; and ð65Þ

P22
nn; Q

22
nn: Eqs: ð24Þ; ð26Þ; and ð27Þ

(
ð42Þ

The algorithm used to avoid numerical cancellations
was described in detail in [2] and summarized in Section
4.4 of [2]. All the technical details of the implementation
can be found in Ref. [2], in particular in the Appendix.
Comments in the code also explain the most important
steps, using the same notation and referring to equations
and sections of Ref. [2].

The function sphCalculatePQ handles all those cal-
culations and returns the two matrices.

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 49
The functions sphGetModifiedBesselProducts,
sphGetXiPsi, and sphGetFpovx are used specifically to
implement the new algorithm.

One important parameter of the new algorithm is the
number of multipoles, NB, used to estimate the modified
Bessel products. For large size parameters, it may be
necessary to use NB4NQ to obtain accurate results.
Whether this precaution is necessary can be easily checked
before carrying out the bulk of the calculations. The
function sphEstimateNB can be called to provide such an
estimate for NB. It calculates the modified Bessel products
ðF þ =xÞ for the maximum size parameter and the smallest
and largest s (if λ-dependent) for increasing NB until all
results up to n¼NQ have converged (within a specified
relative accuracy, the default value is 10�13).

3.8. Matrix inversion for T and R matrices

The inversion of the linear systems for T and R is per-
formed using block inversion as detailed in Section 4.5 of
[2]. Specifically, the inversion is carried out with the fol-
lowing steps (Eq. (70) of [2]):

F1 ¼ Q11
� ��1

;

G1 ¼ P11F1; G3 ¼ P21F1; G5 ¼Q 21F1:

F2 ¼ Q 22�G5Q
12

h i�1
;

G2 ¼ P22F2; G4 ¼ P12F2; G6 ¼Q 12F2:

T12 ¼ G1G6�G4; T22 ¼ G3G6�G2;

T11 ¼ G1�T12G5; T21 ¼G3�T22G5: ð43Þ
This is carried out separately for Teo and Toe.

Two matrix inversions are needed in those steps (to
compute F1 and F2). Because of the often near-singular
nature of the matrices, the choice of the inversion algo-
rithm can have dramatic consequences on the numerical
stability of the calculations. A number of options have
been proposed and studied in the literature. In [22], a
method based on a LU factorization with partial row
pivoting (equivalent to A/B in MATLAB to get AB�1) was
proposed. In [2], we observed that (B.'⧹A.’).’ appeared to be
more numerically stable. This amounts to a LU factoriza-
tion with partial column pivoting (as opposed to row
pivoting as suggested in [22]). Although not explicitly
stated as such, we believe this is equivalent to the
improved algorithm proposed in [23] and based on
Gaussian elimination with back-substitution.

In SMARTIES, we implement the inversion algorithm
explicitly to avoid using the ⧹ operator, which has a dif-
ferent behavior in MATLAB and Octave for near-singular
matrices. The steps are as follows. The function lu is called
on the transpose of the matrix, BT , to enforce column
pivoting instead of rows, i.e. we obtain lower and upper
triangular matrices L and U and a permutation matrix P
such that

LU¼ PBT: ð44Þ
The solution of XB¼A is then obtained by successively
solving the following two triangular linear systems and
transposing the result, i.e.

LZ¼ PAT ð45Þ

UY¼ Z ð46Þ

X¼ YT ð47Þ

F1 and F2 are calculated with this algorithm by setting
A¼ I. Note that with this algorithm, we have not noticed
any difference in accuracy when calculating T directly
from solving TQ ¼ �P as opposed to calculating R first
from RQ ¼ I and then deducing T from T¼ �PR.

The function rvhGetTRfromPQ calculates T (and
optionally R).

Note that, as explained in detail in Ref. [3], the elements
of the T-matrix are not accurate up to multipole n¼NQ

even when P and Q are. If an accurate T-matrix up to
multipole N is required, it is therefore necessary to calcu-
late P and Q with NQ ¼NþΔ multipoles, and then trun-
cate the obtained T-matrix down to N multipoles (see [3]
for full details). In such cases, the function sphEstima-

teDelta can be used to estimate Δ and the function
rvhTruncateMatrices is then used to truncate T down
to N multipoles.

In principle, the T-matrix should satisfy general sym-
metry relations arising from optical reciprocity [3,4],
namely:

T11
nk ¼ T11

kn ; T21
nk ¼ �T12

kn ;

T12
nk ¼ �T21

kn ; T22
nk ¼ T22

kn : ð48Þ

It was suggested in [3,24] that the upper triangular part of
the T-matrix is more accurate in challenging cases than the
lower triangular part. Using the function rvhGetSymme-

tricMat, one can use these symmetry relations to deduce
the lower parts from the upper parts. This can slightly
increase the range of validity of the method.

As pointed out in [3], these precautions are not neces-
sary in many cases, and it is sufficient to check that the
desired physical properties have converged (see con-
vergence tests in Section 2.6).

3.9. Orientation-averaged properties

One of the advantages of the T-matrix formalism is that
the optical properties for any orientation can in principle
be derived from a single computation of the scatterer T-
matrix. In particular, once the T-matrix has been calcu-
lated, it is possible to calculate analytically the optical
properties of a (non-interacting) collection of randomly
oriented scatterers. Such orientation-averaged far-field
cross-sections are evaluated as detailed in Ref. [4]. We
have in particular (Eqs. (5.107) and (5.141) of [4]):

〈Cext〉¼
�2π

k21

X
n;m

Re T11
nnjmþT22

nnjm
� �

;

¼ �2π

k21

X
n ¼ 1…1
m ¼ 0…n

2�δm;0
� �

Re T11
nnjmþT22

nnjm
� �

ð49Þ

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5550
〈Csca〉¼
2π

k21

X
n ¼ 1…1
k ¼ 1…1

m ¼ 0…minðn;kÞ

2�δm;0
� �� T11

nkjm
			 			2þ T12

nkjm
			 			2þ T21

nkjm
			 			2þ T22

nkjm
			 			2� �

ð50Þ

〈Cabs〉¼ 〈Cext〉� 〈Csca〉: ð51Þ
The function rvhGetAverageCrossSections calcu-

lates those cross-sections from a previously obtained T-
matrix.

3.10. Scattering matrix for random orientation

The T-matrix formalism can also be used to efficiently
and accurately compute the scattering matrix for ran-
domly oriented scatterers. The full details of such calcu-
lations are described in Section 5.5 of Ref. [4] and the
corresponding algorithm has been implemented in stan-
dard T-matrix codes [9]. For convenience, we here provide
a function pstScatteringMatrixOA to calculate this
scattering matrix and output the results in the same for-
mat as in Ref. [9]. This function (and the subroutines it
uses) is a direct port of those FORTRAN routines into MATLAB

and are here provided for convenience with permission
from M. Mishchenko. Because no attempt was made to
optimize them for MATLAB, they are much slower than the
corresponding FORTRAN routines. For any intensive scatter-
ing matrix calculations, it is therefore recommended to
export the T-matrix obtained from MATLAB and run the
calculations in FORTRAN using the code of Ref. [9].

3.11. Incident field

For scatterers with a fixed orientation, one first needs
to define the incident field through its corresponding
expansion coefficients anm and bnm (Eq. (13)). Only incident
plane waves with linear polarization are currently imple-
mented in the code. For a general incident plane wave,
those are given in Eqs. (C.56)–(C59) of Ref. [4]. Explicitly,
the field is:

EðrÞ ¼ E0 exp ik1 � rð Þ ð52Þ
and we define the incident k-vector direction with its two
angles from spherical coordinates θp, ϕp, i.e.:

k1 ¼ k1erp

¼ k1 sin θp cos ϕpexþ sin θp sin ϕpeyþ cos θpez
� �

: ð53Þ

The incident field polarization, which must be perpendi-
cular to k1 is then defined by one angle αp as:

E0 ¼ E0 cos αp eθp þ sin αp eϕp

� �
¼ E0 cos αp cos θp cos ϕp� sin αp sin ϕp

� �
ex

h
þ cos αp cos θp sin ϕpþ sin αp cos ϕp

� �
ey

� cos αp sin θp ez

 ð54Þ

With those defined, the expansion coefficients are then
obtained from:

anm ¼ dnm i cos αpπnmðθpÞþ sin αpτnmðθpÞ
�

bnm ¼ dnm i cos αpτnmðθpÞþ sin αpπnmðθpÞ
�
 ð55Þ
where

dnm ¼ ð�1Þmþ1 exp � imϕp

� �
� in

ffi
4πð2nþ1Þ
nðnþ1Þ

s
: ð56Þ

Note that if the incident field is incident along the z
direction, then only jmj ¼ 1 terms are non-zero.

Here are a few examples of common configurations:

KzEx: θp ¼ 0; ϕp ¼ 0; αp ¼ 0 ð57Þ

KzEy: θp ¼ 0; ϕp ¼ 0; αp ¼ π=2 ð58Þ

KxEz: θp ¼ π=2; ϕp ¼ 0; αp ¼ π ð59Þ

KxEy: θp ¼ π=2; ϕp ¼ 0; αp ¼ π=2 ð60Þ

The function vshMakeIncidentParameters can be used
to define these parameters, and vshGetInci-

dentCoefficients to get the incident
field coefficients. We note that these definitions were
chosen for linear polarization, but elliptic polarization
could be easily accommodated by amending the function
vshGetIncidentCoefficients.

3.12. Expansion coefficients of scattered and internal fields
and fixed-orientation cross-sections

Once the incident field expansion coefficients are
defined, it is straightforward to obtain those of the scat-
tered and internal fields from Eq. (18). The function
rvhGetExpansionCoefficients will carry out this task.
The internal fields coefficients are only computed if the
matrix R was calculated.

Once the expansion coefficients of the scattered field
are known, the extinction, scattering, and absorption
cross-sections are simply obtained from similar expres-
sions as for standard Mie theory (Eq. (5.18) of [4]):

Csca ¼
1

k21

X
n;m

cnmj j2þ dnm
		 		2� �

ð61Þ

Cext ¼
�1

k21

X
n;m

c	nmanmþd	nmbnm
� � ð62Þ

Cabs ¼ Cext�Csca: ð63Þ

3.13. Surface fields

T-matrix calculations have been mostly applied to far-
field properties but for many applications in plasmonics,
nanophotonics, optical forces, etc., the near-field proper-
ties are also needed.

The applicability of the T-matrix method to near-field
calculations is still debated; a particular point of concern is
to avoid reliance on the Rayleigh hypothesis, which is
generally not valid. This implies that the scattered field
expansion (Eq. (14)) is no longer valid for fields near the
scatterer surface (but it can be shown that it is valid at
least outside the circumscribing sphere of the scatterer
[4]).

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 51
To circumvent this limitation, we here use an alter-
native approach relying on the internal field expansion
(Eq. (15)), which remains valid everywhere at the surface
(at least in the case of spheroids). This expansion allows us
to calculate the internal field everywhere on the surface
(but inside) of the particle, E

in
. In order to calculate fields

E
out

immediately outside the surface, we apply the stan-
dard boundary conditions:

E
int�E

out
� �

� n¼ 0

εinE
int�εoutE

out
� �

� n¼ 0 ð64Þ

where the normal is

n¼ nrerþnθeθ

¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þr2θ

q er� rθffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þr2θ

q eθ : ð65Þ

Explicitly, we have (using s2 ¼ ε2=ε1)

E
out
r ¼ 1þðs2�1Þn2

r

�

E
in
r þ s2�1

�

nrnθE

in
θ

E
out
θ ¼ s2�1

�

nrnθE

in
r þ 1þðs2�1Þn2

θ

�

E
in
θ

E
out
ϕ ¼ E

in
ϕ ð66Þ

The function pstSurfaceFields uses this method to
calculate the surface electric field along with a number of
surface-averaged properties relevant to plasmonics and
other near-field applications. Note that the ϕ-dependence
of all quantities is relatively simple, since they can all be
expressed as:

Aðr;θ;ϕÞ ¼
Xm ¼ þN

m ¼ �N

Amðr;θÞ expðimϕÞ: ð67Þ

Our code therefore calculates the 2Nþ1 variables Amðr;θÞ
and the ϕ-dependence can then be trivially re-introduced.

3.14. Near fields

This method of calculating surface fields, however,
cannot be used to obtain the near-field except exactly at
the surface. For points sufficiently far from the particle, the
scattered field may be obtained from Eq. (14). However, for
particles deviating from a sphere, the series may not
converge for points close to the particle (failure of the
Rayleigh hypothesis). To test whether a point converges,
an indicative test is to increase the number of multipoles
considered, and confirm that the calculated field converges
to some value. If it fails to converge, either insufficient
multipoles were considered, or the point is in a region
where convergence will never be obtained. We have
recently studied these aspects and developed an alter-
native method of computing near-fields, which will be
discussed in detail elsewhere [25]. We only here give a
brief overview of the method, which is implemented in the
function pstGetNearField.

As originally suggested in Ref. [26], we make use of the
surface integral equation (Eq. (5.168) of [4]), which
expresses the scattered field in terms of the surface fields:

Escaðr0Þ ¼
Z
S
dS iωμ0 n�HðrÞ½
 � G

2

ðr; r0Þþ n� EðrÞ½

�

� ∇� G
2

ðr; r0Þ

 ��

; ð68Þ

where G
2

is the free-space Green's function. The surface
fields E;H can be calculated accurately as described earlier
and the integral is then performed using a double quad-
rature on θ and ϕ (with the same number of nodes for
simplicity). As a result, this method is slower than the
other methods for calculating the scattered field (where
applicable), but will exhibit much better convergence
behavior for points near the particle [25]. An example of
its use is given in ScriptTutorial.
4. Additional implementation details

4.1. File naming conventions and organization

The first three letters of each function are used to
classify functions depending on their roles:

� slv: High-level functions solving a specific class of
problems.

� pst: High-level functions used for post-processing.
� vsh: Mostly low-level functions handling the calcula-

tions of quantities related to vector spherical
wavefunctions.

� rvh: T-matrix related functions specific to particles
with mirror-reflection symmetry.

� sph: T-matrix related functions specific to spheroidal
particles.

� aux: Auxiliary functions (low-level).

Each m-file is also located in a specific folder with the
following classification:

� High-Level: T-matrix related functions most likely to
be called directly by the user.

� Low-Level: T-matrix related functions used by the
high-level functions.

� Materials: Includes dielectric functions of gold (Au)
and silver (Ag) for plasmonics applications, as well as an
example dielectric function interpolated from tabulated
values for silicon (Si).

� Post-processing: Functions to calculate optical
properties.

� Scripts: Contains example and tutorial scripts.
� Solve: Contains the slv functions used to solve a

specific class of problems.
� Utils: Includes miscellaneous utility functions, notably

to export the T-matrix, test whether the code is running
in Octave or MATLAB, or generate quadrature nodes and
weights.

Table 2
Convergence study for prolate spheroids. We here consider a number of
aspect ratios h ranging from 1.1 to 100, and 7 representative values of s.
For each, we calculate the orientation-averaged extinction cross-section
for increasing sizes, characterized by the maximum size parameter
xmax ¼ k1c. The values in the table correspond to the largest xmax for
which convergence was obtained. Those values are only indicators of the
range of validity of the code; they were obtained via an automated
search, which may be slightly inaccurate in some cases.

s h-

1.1 2 4 10 20 100

1.311 þ 0.00i 80 50 45 35 35 35
1.500 þ 0.00i 50 35 30 27 27 25
1.500 þ 0.02i 60 40 30 27 27 27
1.500 þ 2.00i 80 20 14 12 12 10
2.500 þ 0.00i 20 18 12 12 12 12
4.000 þ 0.10i 16 11 8 7 7 6
0.100 þ 4.00i 60 10 7 6 6 5

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–5552
4.2. Storage of matrices

All matrices are stored in cell arrays, such as CstPQa of
dimensions 1�M, where M is the number of m elements
in absmvec. As a result, CstPQa{j} corresponds to
m¼absmvec(j). If all m are computed, then
absmvec¼0:N and the matrices for a given m are stored
in CstPQa{mþ1}.

Each element CstPQa{j} contains a structure stPQ

describing the matrices for the corresponding m, stored in
the following fields:

� stPQ.CsMatList: cell array of strings listing the name
of the matrices. For example stPQ.CsMatList¼
{‘st4MP’,‘st4MQ’}.

� For each string in this list, two fields are included with
eo and oe appended at the end. For example stPQ.

st4MPeo and stPQ.st4MPoe. These st4M structures
contain the matrix in a form described below, which
avoids storing the many zeros that are imposed by the
reflection symmetry.

For a given maximum number of multipoles N, we have
mrnrN and the matrices are square matrices of dimension
Nþ1�m (or N for m¼0) since only elements Mnk with
n; kZm (or Z1 for m¼0) are needed. Therefore for a given
m, Mði; jÞ corresponds to Mn ¼ iþm�1;k ¼ jþm�1 or
Mn ¼ iþm;k ¼ jþm for m¼0. Using the reflection, symmetry the
matrixM is moreover written in block oe–eo notation as in Eq.
(24). In this notation, all the obvious zeros have been removed,
and only the relevant n; k pairs are included.

The four blocks are given in a st4Meo or st4Moe

structure, which contains the following fields:

� st4Meo.m: the m-value the matrix corresponds to.
� st4Meo.M11, .M12, .M21, .M22: matrix elements of

each of the four blocks.
� st4Meo.ind1, .ind2: row and column indices inclu-

ded in each of the four blocks.
� The full matrix can be reconstructed as follows:

Meo ¼
M11ðind1;ind1Þ M12ðind1;ind2Þ
M21ðind2;ind1Þ M22ðind2;ind2Þ

 !

where each block is a Nþ1-m x Nþ1-m square matrix.

To obtain the full matrices in standard form, use the
following call:

Qm¼rvhGetFullMatrix(CstPQa{mþ1},‘st4MQ’);
Note that functions that exploit this symmetry and the

oe–eo matrices are prefixed with rvh.

4.3. Storage of expansion coefficients and other ðn;mÞ arrays

Several arrays depend on (n,m), for example, the
angular functions πnm and τnm, the field expansion coeffi-
cients anm, etc. To store those arrays, we use the “p-index”,
which combines the possible values of (n,m) in a linear
array using the following convention p¼ nðnþ1Þþm. For a
given maximum N, i.e. 1rnrN and jmjrn, the length of
the p-vectors is P ¼NðNþ2Þ.
Acknowledgments

We acknowledge the support of the Royal Society of
New Zealand (RSNZ) through a Marsden Grant (VUW1107)
and Rutherford Discovery Fellowship (VUW1002).
Appendix A. Convergence tests

Table 2 summarizes the results of semi-automated
convergence tests for prolate spheroids with seven differ-
ent values of refractive index. Each entry corresponds to
the estimated largest xmax ¼ k1c (maximum size para-
meter) that the code can accurately model, for a given
aspect ratio h, varied from 1.1 to 100. Almost identical
limits are obtained for prolate and oblate spheroids
(Table 1), but one should note that those would be dif-
ferent if expressed in terms of equivalent-volume-sphere
radius, rV.

Tables 3 and 4 summarize the convergence parameters
for oblate and prolate spheroids, respectively, with
s¼ 1:311þ0i. For each combination of maximum size
parameter xmax and aspect ratio h, we list the pair of
integers N and Nθ that provided the optimum accuracy,
judged from the convergence of the orientation-averaged
extinction cross-section with increasing N;Nθ . In some
cases, the automated search failed to reach the optimum
region of convergence, and the results presented in those
tables should be considered with caution. We recommend
users run their own convergence tests, using those tabu-
lated values as general guidelines.

Table 3
Convergence study for an oblate spheroid with s¼ 1:311þ0i. For each pair of size parameter xmax (columns) and aspect ratio h (rows), we list the convergence parameters N;Nθ , together with the relative error,

only displayed if worse than 10�13.

h: xmax: 0.01 0.1 1 2 3 4 5 6 7 8 10 12 15 20 25 30 40 50 60 70 80

N 5 5 7 9 11 11 13 15 17 17 21 23 27 35 41 47 63 77 95 127 111
1.1 Nθ 6 6 6 7 7 8 8 9 9 10 15 15 15 20 25 35 40 40 80 80 1200

Error – – – – – – – – – – – – – – – – 10�12 10�11 10�9 10�7 10�4

N 5 5 9 11 11 13 15 15 19 19 23 27 31 37 45 53 69 93 115
1.3 Nθ 9 9 9 9 9 10 15 15 15 15 15 20 20 25 45 30 50 45 500

Error – – – – – – – – – – – – – – – 10�12 10�9 10�7 10�3

N 5 7 11 13 15 15 19 19 21 23 25 27 33 41 49 61 75 103
2 Nθ 20 20 20 20 20 20 20 20 25 25 25 25 30 35 45 35 50 45

Error – – – – – – – – – – – – – – 10�12 10�11 10�7 10�4

N 5 7 11 15 17 19 21 23 23 25 29 31 35 45 51 57 59
4 Nθ 40 40 40 40 40 7 40 45 45 45 50 50 60 70 70 90 90

Error – – – – – 10�3 – – – – – – – 10�13 10�11 10�9 10�4

N 5 7 11 15 19 19 19 23 25 27 31 35 37 41 47 47
7 Nθ 70 70 70 70 70 70 80 80 80 80 90 90 100 200 130 130

Error – – – – – – – – – – – – – 10�11 10�10 10�6

N 5 7 13 15 19 19 21 25 27 27 31 33 41 45 43 47
10 Nθ 100 100 90 100 100 100 110 110 110 120 120 130 140 180 180 200

Error – – – – – – – – – – – – – 10�11 10�8 10�6

N 5 7 13 15 19 21 23 23 27 29 33 37 43 43 49 41
20 Nθ 200 200 200 200 200 200 200 220 220 240 260 260 280 300 550 400

Error – – – – – – – – – – – – – 10�12 10�8 10�4

N 5 7 13 17 19 21 23 25 27 29 33 35 39 45 47 45
50 Nθ 500 500 500 500 500 500 550 550 550 600 650 800 700 1100 900 1200

Error – – – – – – – – – – – – 10�13 10�12 10�9 10�6

N 5 7 13 17 19 21 23 25 27 27 33 35 47 53 47
100 Nθ 1000 1100 1000 1100 1000 1100 1100 1100 1100 1100 1300 1500 1400 1600 2000

Error – – – – – – – – – – – – – – 10�9

W
.R
.C.Som

erville
et

al./
Journal

of
Q
uantitative

Spectroscopy
&

R
adiative

Transfer
174

(2016)
39

–55
53

Table 4
Convergence study for a prolate spheroid with s¼ 1:311þ0i. For each pair of size parameter xmax (columns) and aspect ratio h (rows), we list the convergence parameters N;Nθ , together with the relative error, only

displayed if worse than 10�13.

h: xmax: 0.01 0.1 1 2 3 4 5 6 7 8 10 12 15 20 25 30 40 50 60 70 80

N 5 5 7 9 11 11 13 15 17 17 21 23 27 35 41 47 67 79 97 87 109
1.1 Nθ 6 6 6 7 7 8 8 9 10 10 15 15 15 20 25 25 40 60 45 70 120

Error – – – – – – – – – – – – – – – – 10�12 10�10 10�9 10�7 10�4

N 5 5 9 11 11 13 15 15 19 19 23 27 31 37 45 53 73 95 117
1.3 Nθ 9 9 9 9 9 10 15 15 15 15 15 20 20 25 25 30 40 45 180

Error – – – – – – – – – – – – – – – 10�12 10�10 10�7 10�4

N 5 7 11 13 15 15 19 19 21 23 25 27 33 41 49 61 89 113
2 Nθ 20 20 20 20 20 20 20 20 20 25 25 25 30 30 45 45 40 50

Error – – – – – – – – – – – – – – 10�12 10�10 10�7 10�4

N 5 7 11 15 17 19 19 23 23 25 27 31 35 43 49 49 59
4 Nθ 40 40 40 40 40 40 40 40 45 45 45 50 60 90 70 100 110

Error – – – – – – – – – – – – – 10�12 10�9 10�6

N 5 7 11 15 17 19 21 23 25 27 31 33 37 43 43 47
7 Nθ 80 80 80 70 70 70 70 80 80 80 80 90 90 120 120 130

Error – – – – – – – – – – – – – 10�13 10�10 10�8

N 5 7 11 15 17 21 21 23 27 27 31 33 37 45 45 45
10 Nθ 120 120 120 120 120 100 120 120 120 120 120 120 140 160 160 200

Error – – – – – – – – – – – – – – 10�10 10�8

N 5 7 11 15 19 21 21 25 27 27 31 29 39 47 49 45
20 Nθ 220 220 220 260 220 220 220 220 220 260 260 260 280 300 350 350

Error 10�13 10�13 10�13 – – – – – – – – 10�12 – 10�13 10�10 10�7

N 5 7 11 15 19 21 21 25 27 29 31 33 39 45 53 45
50 Nθ 650 650 650 400 500 500 500 500 650 700 600 700 700 900 1100 1200

Error 10�12 10�12 10�12 10�12 – – – – – – – – – 10�12 10�11 10�7

N 5 7 11 15 19 21 21 25 27 29 31 33 39 45 47 47
100 Nθ 800 800 800 800 800 1000 1000 1000 1000 1400 1400 1200 1600 1800 2000 2000

Error 10�12 10�12 10�12 10�12 10�12 10�12 10�13 10�13 10�13 – – – – 10�12 10�11 10�8

W
.R
.C.Som

erville
et

al./
Journal

of
Q
uantitative

Spectroscopy
&

R
adiative

Transfer
174

(2016)
39

–55
54

W.R.C. Somerville et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 174 (2016) 39–55 55
References

[1] Somerville WRC, Auguié B, Le Ru EC. Severe loss of precision in
calculations of T-matrix integrals. J Quant Spectrosc Radiat Transf
2012;113(7):524–35.

[2] Somerville WRC, Auguié B, Le Ru EC. A new numerically stable
implementation of the T-matrix method for electromagnetic scat-
tering by spheroidal particles. J Quant Spectrosc Rad Transf
2013;123:153–68.

[3] Somerville WRC, Auguié B, Le Ru EC. Accurate and convergent T-
matrix calculations of light scattering by spheroids. J Quant Spec-
trosc Rad Transf 2015;160:29–35.

[4] Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption and
emission of light by small particles. 3rd ed.Cambridge: Cambridge
University Press; 2002.

[5] Etchegoin PG, Le Ru EC, Meyer M. An analytic model for the optical
properties of gold. J Chem Phys 2006;125:164705.

[6] Le Ru EC, Etchegoin PG. Principles of surface enhanced raman
spectroscopy and related plasmonic effects.Amsterdam: Elsevier;
2009.

[7] Barber PW, Hill SC. Light scattering by particles: computational
methods.Singapore: World Scientific; 1990.

[8] Quirantes A. A T-matrix method and computer code for randomly
oriented, axially symmetric coated scatterers. J Quant Spectrosc Rad
Transf 2005;92(3):373–81.

[9] Mishchenko MI, Travis LD. Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly
oriented, rotationally symmetric scatterers. J Quant Spectrosc Rad
Transfer 1998;60:309–24.

[10] MATLAB, version 7.14 (R2012a). The MathWorks Inc. Natick, Mas-
sachusetts; 2012.

[11] John W. Eaton, David Bateman, Søren Hauberg, Rik Wehbring (2015).
GNU Octave version 4.0.0 manual: a high-level interactive language
for numerical computations. URL http://www.gnu.org/software/
octave/doc/interpreter/.

[12] Somerville WRC, Auguié B, Le Ru EC. [link] URL 〈http://www.victoria.
ac.nz/scps/research/research-groups/raman-lab/numerical-tools〉;
2015.

[13] Boyack R, Le Ru EC. Investigation of particle shape and size effects in
SERS using T-matrix calculations. Phys Chem Chem Phys 2009;11:
7398–405.
[14] Mishchenko MI. Light scattering by randomly oriented axially
symmetric particles. J Opt Soc Am A 1991;8(6):871–82.

[15] Khlebtsov NG. Orientational averaging of light-scattering obser-
vables in the T-matrix approach. Appl Opt 1992;31:
5359–65. http://dx.doi.org/10.1364/AO.31.005359.

[16] Mishchenko M. Light scattering by size-shape distributions of ran-
domly oriented axially symmetric particles of a size comparable to a
wavelength. Appl Opt 1993;32(24):4652–66.

[17] Mackowski DW, Mishchenko MI. Calculation of the T-matrix and the
scattering matrix for ensembles of spheres. J Opt Soc Am A 1996;13:
2266–78. http://dx.doi.org/10.1364/JOSAA.13.002266.

[18] Peterson B, Ström S. T-matrix for electromagnetic scattering from an
arbitrary number of scatterers and representations of E(3). Phys Rev
D 1973;8(10):3661–78.

[19] Somerville WRC, Auguié B, Le Ru EC. Simplified expressions of the T-
matrix integrals for electromagnetic scattering. Opt Lett 2011;36
(17):3482–4.

[20] Mishchenko MI. Calculation of the amplitude matrix for a non-
spherical particle in a fixed orientation. Appl Opt 2000;39(6):
1026–31.

[21] von Winckel G., Legendre–Gauss quadrature weights and nodes.
MATLAB central file exchange, 2004.

[22] Wielaard D, Mishchenko M, Macke A, Carlson B. Improved T-matrix
computations for large, nonabsorbing and weakly absorbing non-
spherical particles and comparison with geometrical-optics
approximation. Appl Opt 1997;36(18):4305–13.

[23] Moroz A. Improvement of Mishchenko's T-matrix code for absorbing
particles. Appl Opt 2005;44(17):3604–9.

[24] Volkov SN, Samokhvalov IV, Kim D. Assessing and improving the
accuracy of T-matrix calculation of homogeneous particles with
point-group symmetries. J Quant Spectrosc Rad Transf 2013;123:
169–75.

[25] Le Ru EC, Roache S, Somerville WRC, Auguié B. Numerical investi-
gations into the Rayleigh hypothesis for the T-matrix method.
Manuscript in preparation.

[26] Doicu A, Wriedt T. Near-field computation using the null-field
method. J Quant Spectrosc Rad Transf 2010;111(3):466–73.

http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref1
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref1
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref1
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref1
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref2
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref2
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref2
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref2
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref2
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref3
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref3
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref3
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref3
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref4
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref4
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref4
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref5
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref5
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref6
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref6
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref6
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref7
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref7
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref8
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref8
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref8
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref8
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref9
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref9
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref9
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref9
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref9
http://www.gnu.org/software/octave/doc/interpreter/
http://www.gnu.org/software/octave/doc/interpreter/
http://www.victoria.ac.nz/scps/research/research-groups/raman-lab/numerical-tools
http://www.victoria.ac.nz/scps/research/research-groups/raman-lab/numerical-tools
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref13
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref13
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref13
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref13
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref14
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref14
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref14
http://dx.doi.org/10.1364/AO.31.005359
http://dx.doi.org/10.1364/AO.31.005359
http://dx.doi.org/10.1364/AO.31.005359
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref16
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref16
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref16
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref16
http://dx.doi.org/10.1364/JOSAA.13.002266
http://dx.doi.org/10.1364/JOSAA.13.002266
http://dx.doi.org/10.1364/JOSAA.13.002266
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref18
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref18
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref18
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref18
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref19
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref19
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref19
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref19
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref20
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref20
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref20
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref20
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref22
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref22
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref22
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref22
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref22
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref23
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref23
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref23
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref24
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref24
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref24
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref24
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref24
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref26
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref26
http://refhub.elsevier.com/S0022-4073(15)30224-7/sbref26

	smarties: User-friendly codes for fast and accurate calculations of light scattering by spheroids
	Introduction
	Description and overview
	Relation to other codes
	Aims of this manual
	Licensing
	Disclaimer
	Feedback

	Getting started
	Installation
	Octave users
	Initial steps
	Definition of the parameters
	Minimal example
	Convergence, accuracy, and range of validity
	Case study: influence of size and aspect ratio on the far-field properties of silver spheroids

	Underlying principles of the code
	Spherical coordinates
	The spheroid geometry
	Principle of the T-matrix/EBCM method
	Additional simplifications for spheroids
	Angular functions
	Integral quadratures
	Computation of the P and Q matrices
	Matrix inversion for T and R matrices
	Orientation-averaged properties
	Scattering matrix for random orientation
	Incident field
	Expansion coefficients of scattered and internal fields and fixed-orientation cross-sections
	Surface fields
	Near fields

	Additional implementation details
	File naming conventions and organization
	Storage of matrices
	Storage of expansion coefficients and other (n,m) arrays

	Acknowledgments
	Convergence tests
	References

